

FutureGuide[™]-SR15E-200

Compliant with ITU-T G.657.A1

We use an innovative coating technology in the FutureGuide[™]-SR15E to provide ITU-T G.657.A1 fiber with a coating diameter of 200µm. FutureGuide[™]-SR15E-200 maintains macro-bend properties while significantly reducing the coating diameter, and its micro-bend properties greatly exceed those of conventional optical fibers (G.652.D).

This fiber has a reduced cross-sectional area of approximately 40%, which contributes to a more effective use of the available space and also saves costs on cable production, transportation and installation.

Features

- Reduced coating diameter down to 200µm with tolerable micro-bend performance
- Improved outstanding macro-bend performance while complying with ITU-T G.657.A1.
- Full compliance with ITU-T G.652 recommendation and Zero(low)-water peak attenuation complying with ITU-T G.652.D

Customer's advantages

- By utilizing this fiber, it becomes possible to increase the number of optical fibers in the cable and/or design the cable with a smaller diameter.
- Helps full-band CWDM by its zero(low)-water peak technology.

Attenuation		
Attenuation coefficient at 1310 nm	≤ 0.35 dB/km	
Attenuation coefficient at 1383 nm	≤ 0.34 dB/km * 1	
Attenuation coefficient at 1550 nm	≤ 0.20 dB/km	
Attenuation coefficient at 1625 nm	≤ 0.22 dB/km	
Attenuation vs. wavelength *2		
1285 – 1330 nm ref. λ of 1310 nm	$\alpha \leq 0.03 \text{ dB/km}$	
1525 – 1575 nm ref. λ of 1550 nm	$\alpha \leq 0.02 \text{ dB/km}$	
Macro-bending loss		
Φ=30 mm, 10 turns at 1550 nm	\leq 0.25 dB	
Φ=30 mm, 10 turns at 1625 nm	≤ 1.0 dB	
Φ=20 mm, 1 turn at 1550 nm	\leq 0.75 dB	
Φ=20 mm, 1 turn at 1625 nm	≤ 1.5 dB	
Cut off wavelength		
Cable cut-off wavelength	≤ 1260 nm	

Optical Characteristics

Chromatic dispersion		
Chromatic dispersion coefficient at 1285-1330 nm	≤ 3.5 ps/(nm·km)	
Chromatic dispersion coefficient at 1550 nm	13.3 - 18 ps/(nm·km)	
Chromatic dispersion coefficient at 1625 nm	17.2 - 22 ps/(nm·km)	
Zero-dispersion wavelength	1300 - 1324 nm	
Zero-dispersion slope	0.073 - 0.092 ps/(nm ² ·km)	
Polarization mode dispersion (PMD) *3		
Uncabled fiber PMD coefficient	≤ 0.1 ps/√km	
Link design value PMDQ	≤ 0.08 ps/√km	

- *1. The attenuation at 1383nm after hydrogen aging in accordance with IEC60793-2-50
- *2. The attenuation within the specified wavelength range is limited to a difference of α or less compared to the reference wavelength (ref. λ).
- *3. This characteristic is guaranteed only in a virtually tension-free condition.

Structural Characteristics

Mode field diameter at 1310 nm	$8.6\pm0.4~\mu m$
Cladding diameter	$125.0\pm0.7\;\mu\text{m}$
Coating diameter (colored)	190 - 210 µm
Core concentricity error	≤ 0.5 µm
Cladding non-circularity	≤ 0.7 %
Coating-Cladding concentricity	≤ 10 µm
Fiber curl radius	≥ 4.0 m

Mechanical Characteristics

Proof test *4	\geq 1.5 % (150 kpsi or 1.0 GPa)
Dynamic stress corrosion susceptibility parameter (n _d)	≥ 20
Coating strippability F	$0.4 \text{ N} \le \text{F} \le 8.9 \text{ N}$

*4. The product is subjected to tensile testing throughout its entire length.

Environmental Characteristics

	Attenuation Change at 1310, 1550, 1625 nm
Temperature dependence -60 to 85 °C	≤ 0.05 dB/km Ref. temp. 23 °C
Water immersion at 23 $^{\circ}\text{C}\pm2$ $^{\circ}\text{C}$	≤ 0.05 dB/km
Dry heat at 85 °C \pm 2 °C	≤ 0.05 dB/km Ref. temp. 23 °C
Damp Heat 85 °C at 85 %R.H.	≤ 0.05 dB/km Ref. temp. 23 °C

Performance Characteristics

	Typical value
Zero dispersion wavelength	1315 nm
Zero dispersion slope	0.086 ps/(nm ² ·km)
Effective group index of refraction N_{eff} at 1310 nm	1.4680
Effective group index of refraction N_{eff} at 1550 nm	1.4686
Effective group index of refraction N_{eff} at 1625 nm	1.4691

Note: This document is published for your reference purpose only and the specifications for commercial purpose will be issued upon agreement with customers.

Note: If you require more detailed information, please contact us by scanning the QR code below.

